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Abstract

In this paper, we study the application of the noising method, a recent combinatorial optimization metaheuristic, to

the Travelling Salesman Problem (TSP). We ®rst detail the features of the noising method in order to adapt it to the

TSP. Then we ``experimentally'' compare it to the simulated annealing method, and we study its sensitiveness to dif-

ferent parameters involved in its design. Two types of TSPs have been considered: the randomly weighted TSP, for

which the weights of the edges are randomly chosen, and the Euclidean TSP, for which the vertices belong to the

Euclidean plane and where the weights of the edges are given by the Euclidean distances between the vertices. Ó 2000
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1. Introduction

The noising method is a recent combinatorial
optimization heuristic: its ®rst results have been
published in 1993 in [5]. It is not designed to solve
only one special type of problem (see [6] for ref-
erences upon other applications), but, as other
algorithms sometimes called ``metaheuristics'' (see
for instance [2] or [13]), to be applicable to various
kinds of combinatorial optimization problems.

Such a problem may be described as follows: given
a ®nite set S and a function f de®ned on S, ®nd the
minimum of f over S and an element of S mini-
mizing f. To minimize f, the noising method does
not take the genuine values of f into account but
considers that they are perturbed in some way by
noises. During the running of the method, the
noises decrease down to 0 so that, at the end, we
deal with the genuine function f.

The aim of this paper is to analyse the sensi-
tiveness of the noising method to the tuning of its
parameters when applied to the Travelling Sales-
man Problem (TSP). So, here, S is the set of all
Hamiltonian cycles (HC) in a given weighted non-
oriented graph G and f gives the weight of such a
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cycle; the TSP consists in ®nding an HC mini-
mizing f for any given graph G. In the following, G
is assumed to be complete; n denotes the number
of vertices of G and the vertices of G will be de-
noted by x1; x2; . . . ; xn (where xn�i � xi); as an HC
can be considered as de®ned by a permutation r
on fx1; x2; . . . ; xng, such an HC will be noted
xr�1�; xr�2�; . . . ; xr�n�. It is well-known that the TSP
is NP-hard and remains so if the weights are
Euclidean distances (for further references on the
TSP, see for instance [8,9,11]).

The paper is organized as follows. In Section 2,
we give a short presentation of the noising method
and we show how to adapt it to the TSP. Section 3
is devoted to the results provided by the applica-
tion of the noising method to the TSP for which
the valuations are randomly chosen (they are not
necessarily distances); we especially study the e�-
ciency of the method with respect to the number of
iterations and more generally with respect to the
parameters on which the noising method depends.
In Section 4, we do the same for the Euclidean
TSP, for which the vertices are (randomly or not)
spread over the plane and the distances are
the Euclidean ones. Conclusions take place in
Section 5.

2. Principle of the noising method applied to the

TSP

In this section, we brie¯y present the main
principles of the noising method in order to apply
it to the TSP. More precisely, we detail two pos-
sible schemes of the noising method applied to the
TSP, though other schemes could have been de-
signed (the interested reader can ®nd a review
about the di�erent schemes and the other appli-
cations of the noising method in [6]).

Many heuristics applied to combinatorial opti-
mization problems are based on elementary
transformations, that is, operations changing one
feature of the current solution (here, an HC)
without changing its global structure. For the TSP,
the well-known 2-opt transformation proposed by
Lin [12] gives such an elementary transformation:
if the current HC C is xr�1�; xr�2�; . . . ; xr�n� for some
permutation r, LinÕs 2-opt consists in removing

from C two edges xr�i�; xr�i�1�
� 	

and xr�j�; xr�j�1�
� 	

for some indices i and j with n P j > i� 1 P 2 and
j 6� n if i � 1, and replacing them by the two edges

xr�i�; xr�j�
� 	

and xr�i�1�; xr�j�1�
� 	

to get a new HC.
The application of this elementary transformation
to the current HC is utterly speci®ed by the two
values of i and j with n P j > i� 1 P 2 and
�i; j� 6� �1; n�.

Thanks to this transformation, we may de®ne
the neighbourhood N(C) of any HC C: N(C) is
the set of the HCs that we get by applying LinÕs
2-opt to C for any values of i and j with n P j >
i� 1 P 2 and �i; j� 6� �1; n�. An element of N(C) is
called a neighbour of C; any HC has NS �
n�nÿ 3�=2 neighbours; this quantity NS will be
called the neighbourhood size. Now, we may design
an iterative improvement method (also called a de-
scent) for the TSP: from the current HC C, we
apply the 2-opt transformation so that we get a
new HC C0 2 N�C�. Let Df �C;C0� denote the
variation of f: if we have Df �C;C0� < 0, then C0

becomes the new current HC (C0 is a solution
better than C with respect to f ), otherwise we keep
C as the current HC. Then we do it again with the
current HC, until it is impossible to ®nd a neigh-
bour of the ®nal HC Cfinal which is better than
Cfinal : 8C 2 N�Cfinal�; f �C�P f �Cfinal�.

Notice that there are several ways of choosing
C0 from C. As C0 is the result of a 2-opt transfor-
mation applied to C; C0 can be characterized by
the two parameters i and j of this 2-opt. So, we
may get C0 by choosing i and j randomly (with
n P j > i� 1 P 2 and �i; j� 6� �1; n�), as it is done
in a classical simulated annealing method (it is the
case for instance in [4]; see also [10]). We can also
try the pairs �i; j� in a systematic way: starting with
a random pair �i0; j0�, we try (i0; j0 � 1) after
�i0; j0�, then �i0; j0 � 2� and so on until (if neces-
sary) the last possible pair. We call this strategy a
systematic exploration of the neighbourhood. This
strategy avoids to consider a same neighbour twice
and usually allows to save CPU time.

Like several other metaheuristics, the noising
method is based on a descent. But, instead of
computing the genuine values of f, we add a per-
turbation that we call a noise to f. In a more
general context (see [6]), we may design several
ways of perturbing the values of f. In this paper,
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we consider only one kind of noising: noises are
added to the variation Df of f when an elementary
transformation has been applied to the current
solution in order to get one of its neighbours.
More precisely, instead of the genuine variation
Df, we consider a ``noised'' variation Dfnoised �
Df � q, where q (the noise) is a random real drawn
with a uniform distribution into the interval
�ÿr;�r� (other distributions also can be tried; see
[6]) and where r is the noise-rate. The initial value
rmax of r depends on the maximum weight of G. In
order to converge towards f, the noise-rate r de-
creases from time to time, when a given number of
elementary transformations are tried. We will call
``iteration'' all the operations performed when one
elementary transformation is tried. The number of
elementary transformations tried, or rather the
number of iterations performed between two de-
creases of r, will be noted nb it at fixed rate; it will
be convenient to express it with respect to the
neighbourhood size NS. The principle of the
noising method for our application can be sum-
marized as in Fig. 1. The whole process stops when
a given number total nb it of iterations are per-
formed. For the choice of the neighbour C0 of C,
we apply a systematic exploration.

In order to get back the genuine function f at
the end of the method, we may think to make r
decrease down to 0. But in fact, when r is low
enough, it appears from our experiments that the
solution does not evolve any longer. Thus it is
useless to make r decrease down to 0, which con-

sumes CPU time without improving the solution.
Consequently, the noise-rate is bounded by two
extreme values rmax and rmin (if we want to be sure
to reach a local minimum while rmin is not equal to
0, it is always possible to add a ®nal ``unnoised''
descent after the repeat-loop in the scheme of
Fig. 1). It is also necessary to precise the way
of decreasing r; we choose an arithmetical decreas-
ing, as in [5] (see [6] for references on other
choices). It is easy to compute the rate l of this
arithmetical decreasing from the other parameters:

l � rmax ÿ rmin

total nb it=nb it at fixed rate
ÿ �ÿ 1

:

Of course, the best solution (with respect to the
genuine values of f) best sol computed during
the method is memorized and, as shown by Fig. 1,
the method returns best sol at the end.

Then it appears that this version of the noising
method depends on four parameters: rmax, rmin,
total nb it and nb it at fixed rate (the initial solu-
tion does not play an important role for the
method: we may initialize the process with a ran-
dom solution, or a solution found by another
heuristic...). Some variants can be designed, with
extra parameters or not (see [6]). We describe two
of them below.
� First variant: The ®rst variant consists in al-

ternating a certain number of ``noised'' iterations
with ``unnoised'' descents. More precisely, in order
to stay closer to f, we apply a descent with respect
to f (that is, with a noise equal to 0) when a ®xed
number of ``noised'' iterations are performed. This
number will be chosen as a multiple of NS. This
variant allows to check a good number of local
minima (with respect to f) which could provide
good solutions.
� Second variant: The second variant consists of

coming back to the best computed solution peri-
odically. Indeed, because of the noises added to
the variations Df, it may happen that we leave an
interesting area of the space of solutions for a less
interesting one. So one possible strategy is to pe-
riodically restart the current solution with the best
solution found since the beginning. Of course, it is
not useful to restart the current solution too often.
To de®ne the frequency of the restart, we intro-Fig. 1. A scheme of the noising method.

268 I. Charon, O. Hudry / European Journal of Operational Research 125 (2000) 266±277



duce a new parameter that we call nb restarts,
which gives the number of restarts applied during
the whole process. Thus, when total nb it itera-
tions are performed during the whole process,
there are about total nb it=nb restarts iterations
performed between two restarts.

With these di�erent principles, we study the
application of two noising methods to the TSP,
called Noising1 and Noising2 in the following.
Noising1 is a basic noising method following the
scheme of Fig. 1 without the above variants, while
Noising2 includes them; so Noising2 needs the
tuning of two extra parameters: the number aNS
of ``noised'' iterations performed between two
``unnoised'' descents (®rst variant) and the number
of restarts nb restarts (second variant). Noising2 is
illustrated by Fig. 2.

The reason for which we add a noise to the
variations of f is to avoid being trapped by a local
minimum. It means that the maximum value rmax

of the noise-rate should be chosen in such a way
that, at least at the beginning of the process, a bad
transformation (that is, a transformation yielding
an increase of f), may be accepted, as it is also the
case in simulated annealing for instance. As the
added noises are chosen in an interval centered on
0, we may also reject a good transformation (that is,
a transformation yielding a decrease of f), con-
trarily to what happens with simulated annealing...

3. Analysis of the noising methods applied to

randomly weighted TSPs

In this section, we deal with a complete graph G
of which the weights are not necessarily distances
(they do not necessarily satisfy the triangular in-
equalities). Among our experiments, we only detail
here those results that we got on eight graphs, but
the conclusions for the other studied graphs (ran-
domly generated or coming from the public library
TSPLIB maintained by Reinelt [14]) are qualita-
tively the same; for this reason, we do not report
the results got for them. The ®rst two graphs,
called ``rand100'' and ``rand200'' in the following,
have respectively 100 and 200 vertices; their
weights were randomly generated with a uniform
distribution on f1; 2; . . . ; 100g for rand100 and on
f1; 2; . . . ; 1000g for rand200. Their optimum val-
ues are unknown; the best value that we computed
for rand100 is 286 (to be more speci®c, the average
value provided by a simple descent is about 470);
the best value that we computed for rand200 is
4516 (and the average value provided by a simple
descent is about 7200). The other six graphs come
from the library TSPLIB ([14]). Their names are
gr120, KroA100, Pr152, KroB200, Lin318,
pcb442; the numbers appearing in the names give
their number of vertices; they are in fact graphs of
which the vertices are points in the plane and the
weights are the Euclidean distances but, in this
section, we do not take advantage of this property
and we do as if the weights were not distances. The
minimum weights of an HC are known for these
graphs: they are equal to 6942 for gr120, 21282 for
KroA100, 73682 for Pr152, 29437 for KroB200,
42090 for Lin318 and 50778 for pcb442. We
compare the results of Noising1 and Noising2 to
those ones which have been provided by a classical
simulated annealing method as in [4] or [10] (other
simulated annealing schemes, for the TSP or for
other problems as well, may be found in [1]).

One di�culty to compare these results comes
from the fact that we may compare them accord-
ing to two main criteria: the quality of the solu-
tions (the values of f) and the consumed resources
(for instance, the CPU time). In order to keep only
one criterion, we give the same resources to each
method. The choice of the CPU time does notFig. 2. The scheme of Noising2.

I. Charon, O. Hudry / European Journal of Operational Research 125 (2000) 266±277 269



seem fair, because for example simulated anneal-
ing may consume more or less time to compute
exponentials, depending on the presence or not of
a mathematical preprocessor speeding computa-
tions up. To measure the resources, we de®ne an
evaluation as the operation done when a value of f
is computed. Then we give to each method the
same amount of evaluations to ®nd a good solu-
tion; as an elementary transformation involves
also the computation of one value of f, and as
conversely a value of f is computed only when we
apply an elementary transformation (except the
®rst time, when we compute the value of the
starting solution), the number of evaluations given
to a method is also the number of elementary
transformations tried during the running of the
method. This choice has also the advantage to lead
to a notion of resources that are computer-free,
programming language-free and, in some extent,
less sensitive to a clumsy programming. In order
not to deal with too big numbers, the number of
evaluations given to each method, as well as the
number of iterations, are supposed to be multiples
of NS � n�nÿ 3�=2.

For Noising2, we perform 4NS ``noised'' iter-
ations between two ``unnoised'' descents: a � 4.
Still for Noising2, the number of restarts is chosen
as about the square root of the total number of
iterations divided by NS:

nb restarts �
���������������������
total nb it

NS

r
:

It involves that the number of iterations performed
between two starts is approximately equal to���������������������������������

total nb it � NS
p

. To be more speci®c, one de-

scent typically requires 7NS evaluations for
rand100 and about NS for gr120.

The values of the parameters are chosen as the
best ones found during the experiments done in
order to tune them. For instance, for rand100, they
are:
· For Noising1 and Noising2: rmax � 10; rmin � 5;
· For the simulated annealing method (SA in

what follows): initial temperature� 8, number
of temperature decreases� 35, geometric de-
creasing with a ratio equal to 0.925.

While they are, for gr120:
· For Noising1 and Noising2: rmax � 80; rmin �

20;
· For SA: initial temperature� 80, number of

temperature decreases� 35, geometric decreas-
ing with a ratio equal to 0.925.
Fig. 3 shows, for rand100 and rand200, the

evolution of the average of f over 100 tests ac-
cording to the number of evaluations total nb it
devoted to the three methods Noising1, Noising2
and SA. Notice that the scale is logarithmic for the
number of evaluations.

Figs. 4±6 show, for the TSPLIB graphs, the
evolution of the average of f over 100 tests ac-
cording to the number of evaluations (still with a
logarithmic scale for the number of evaluations).

From these experiments, it appears that Nois-
ing2 seems better than SA independently from the
number of evaluations. On the other hand, Nois-
ing1, which is usually the best for a small number
of evaluations, loses its leadership quickly with
respect to Noising2, more progressively with re-
spect to SA, to become less e�cient than SA when
the resources (the number of evaluations) are im-
portant. These conclusions are the same for the

Fig. 3. Evolution of f in function of total nb it=NS for rand100 (left) and rand200 (right).
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other graphs (randomly weighted or coming from
the TSPLIB) that we tested and for which we do
not report the detailed results, similar to the pre-
vious ones.

About the CPU time, for the same number of
evaluations, our SA (we did not try the schemes
described in [1], though they may be more pow-
erful than the one adopted here) is approximately
three times longer than the noising methods. So, if
the resources would have been the CPU time, the
gap between SA and Noising2 would be still more
important and the progression of Noising1 to-

wards SA still slower. This larger amount of time
for SA can be explained by di�erent reasons: the
random exploration of the neighbourhood, the
fact that SA accepts more transformations than
Noising1 or Noising2 (and such an accepted
transformation involves an update of the current
solution, which is done in O(n) while the rest of an
iteration is in O(1)), the use of mathematical
functions which consume time (the exponential), a
greater use of random numbers, which also con-
sumes time... If we decide to choose the CPU time
as the resources, then the noisings are clearly

Fig. 4. Evolution of f in function of total nb it=NS for gr120 (left) and Kroa100 (right).

Fig. 6. Evolution of f in function of total nb it=NS for Lin318 (left) and pcb442 (right).

Fig. 5. Evolution of f in function of total nb it=NS for Pr152 (left) and KroB200 (right).
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better than SA. If we consider the number of
evaluations total nb it as the resources, Noising2 is
better than SA for any value of total nb it while
Noising1 is better than SA when total nb it is less
than about 3000NS.

We studied also the sensitiveness of the noisings
with respect to their parameters. Except the total
number of iterations, which is obviously important
but for which it is useless to do an experimental
study (the greater this number, the better the al-
gorithm), these parameters are rmax and rmin for
Noising1 and Noising2, and also a and nb restarts
for Noising2. Our aim is to know whether they
must be tuned precisely or not in order to get an
e�cient scheme for the noisings.

Here again, we report only a part of our ex-
periments, because the results stated below are
qualitatively the same for the other experiments.
The following study of the sensitiveness was done
on rand100 and on Noising2 with 1000NS evalu-
ations (in fact, we tried other quantities for the
number of evaluations: it is remarkable that we got
almost the same tunings for rmax and rmin; this
conclusion holds also for Noising1 and for the
other graphs). First, we give to rmin the best value
that we found, that is 5, and we vary rmax from 6 to
16. Fig. 7 shows the average value of f over 100
trials, for each value of rmax. Then, we give to rmax

the best value that we found, that is 10, and we
vary rmin from 0 to 10. Fig. 8 shows the average
value of f over 100 trials, for each value of rmin.

From these ®gures, it appears that a too small
value for rmax does not allow to get good results:
then the behaviour of the method gets closer to the

one of a descent (but it still remains quite better
than a descent), because the noises do not change
enough the values taken by f. On the other hand,
giving a too great value to rmax consumes resources
uselessly at the beginning of the process: it is like a
blind walk in the space of solutions. Then, when
the values taken by rmax become more interesting,
that is, smaller, the remaining resources are no
longer enough to ®nd a solution as good as the one
found when rmax is about 10. Nonetheless, we see
that the quality of the solution is almost the same
for rmax belonging to {9, 10, 11, 12}, and even for
rmax belonging to {8, 13, 14} the solution is not far
the one provided by rmax � 10. This means that it
is not crucial to ®nd the optimal value of rmax very
precisely: ®nding it at 10% or even 20% can be
satisfying.

For rmin, a too great value, near the one of rmax,
is obviously a bad choice: we never consider the
genuine function to optimize and so, if the value of
rmax is properly chosen in order to be e�cient, the
process will optimize a ``noised'' function which
can be far from the genuine one. On the other
hand, if we consider the values of rmin near 0, we
see that the result is less good than with rmin � 5. A
more detailed analysis on what happens at each
iteration shows that the last iterations are then
useless: the noises are not high enough to change
the variations of the function signi®cantly, and so
we consume resources uselessly at the end of the
process. Anyway, this phenomenon disappears
when we increase the resources. If we allow more
evaluations, the solution found with rmin � 0 is the
same as the one found with the optimal value of
rmin. Thus, if the user has the possibility to spend
time for some useless iterations, it can be a goodFig. 7. Sensitiveness to rmax.

Fig. 8. Sensitiveness to rmin.
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deal for him or her to increase the number of
evaluations a little bit and to ®x rmin to 0, rather
than spending time to look for a better value of
rmin. We may also observe that, as for rmax, it does
not seem very important to ®nd the best value of
rmin: here, choosing rmin in {4, 5, 6, 7} or even
choosing rmin6 7 leads to rather good results.
Other experiments on other problems (see [6] for
references) con®rm these conclusions.

For the study of a and nb restarts, we consider
rand100 once again, still with 1000NS evaluations
(but, once again, we did many other experiments
with the same qualitative conclusions). First, we
vary a with nb restarts � 32 (since

����������
1000
p � 31:6)

or without this variant (nb restarts � 0). Fig. 9
shows the evolution of the average value of f over
100 trials for a � 2b with 16 b6 10 (for b � 10,
we get a � 1024: so there is no ``unnoised'' de-
scent, since the total number of evaluations is
equal to 1000NS) and for 26 a6 10. From these
results, we see that the optimal value of a is rather
precisely equal to 4 (though 3 and 5 give almost
the same results) if the restart variant is applied
simultaneously. But, if we never come back to the
best solution found since the beginning of the
process, then applying unnoised descents more
frequently seems to be better; in fact, it is a kind of
compensation: the possible wandering due to the
addition of noises can be balanced by a periodic
return to the best solution found since the begin-
ning or by applying a descent with respect to the
genuine function; both are ways to come back to a
solution better than the current one, what could be
a good thing in case of wandering.

We see also from Fig. 9 that combining the two
variants gives better results than applying only one

of them. This is con®rmed by the results of Fig. 10
in which we vary the number m of iterations be-
tween two restarts divided by NS (still with
total nb it � 1000NS):

m � total nb it
nb restarts� NS

� 1000

nb restarts
;

with a � 4 or without applying ``unnoised'' de-
scents (the scale for m is still logarithmic). Many
values for nb restarts seem to be correct, except the
too important ones (associated with the small
values of m). For m < 16, coming back to the best
solution is too frequent and limits the diversity of
the search too much. From these experiments and
others done on other problems (see [6]), it seems

that taking nb restarts � �����������������������������
total nb it=NS

p
(what

gives nb restarts � 32 here) is generally a good

choice.

4. Analysis of the noising methods applied to

Euclidean TSPs

In this part, the vertices of G are points in the
plane and the valuation of an edge fxi; xjg is the

Fig. 9. Sensitiveness to a.

Fig. 10. Sensitiveness to m � 1000=nb restarts.
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Euclidean distance between these two points xi

and xj.
We may take advantage of the triangular in-

equalities satis®ed in the Euclidean case: there will
be no crossing edges in an optimal HC. One con-
sequence of this is that, to get a rather good initial
solution, we may do the following (as in [4]): ®rst,
we cluster the vertices into k regions; then the
vertices in the same region are linked together by a
Hamiltonian sub-chain; ®nally, the k Hamiltonian
sub-chains are linked into a unique Hamiltonian
chain by using a given tour of the regions. To
improve this initial solution, we apply the LinÕs 2-
opt once again, restricting its application to edges
of which the vertices belong to a same region or to
two adjacent regions. Thus the neighbourhood size
NS is quite less than in the general case, that al-
lows to save CPU time by reducing the number of
tried elementary transformations.

We detail here the results obtained only for four
graphs; but, as for Section 3, the conclusions are
the same with other graphs (randomly generated
or coming from the TSPLIB) on which we tested
the methods. The two ®rst graphs come from the
library TSPLIB [14], their names are vm1084 and
d1291, there are 1084 vertices for vm1084 and 1291
for d1291; they are given by their coordinates in
the plane and the weight of an edge {xi, xj} is
given by the round value of the Euclidean distance
between xi and xj. The weights of the optimal
solutions are known: they are equal to 239297 for
vm1084 and to 50801 for d1291. The third graph,
named Euc1000 below, has 1000 vertices belonging
to the unit square; their locations are chosen ran-
domly with a uniform distribution on the unit
square; the minimum weight is not known: the best
one we found is around 23.161. The fourth one is

called Grid2500 below; its n � 2500 vertices are
located on the crossings of a regular grid in the
unit square: their coordinates are �0:01� 0:02i;
0:01� 0:02j� with 06 i6 49 and 06 j6 49; it is
easy to see that the minimum weight of an HC is���

n
p � 50: an optimal solution goes only through
``horizontal'' or ``vertical'' edges.

This study is quite similar to the previous one.
In order to apply the above restriction to the LinÕs
2-opt, the plane containing the vertices is divided
into 400 (resp. 324 and 784) little squares for
vm1084 and d1291 (resp. for Euc1000 and
Grid2500), so that each square contains only few
vertices (as in [4]). The average neighbourhood size
NS is about 26,400 for vm1084, 37,500 for d1291,
27,800 for Euc1000 and 71,700 for Grid2500. We
only compare Noising1 and SA (we shall see latter
why we do not consider Noising2). The values of
the parameters are chosen as the best ones that we
found; they are tuned as follows:
· for Noising1: rmin � 0 for the four graphs;

rmax � 700 for vm1084, 200 for d1291, 0.04 for
Euc1000, 0.03 for Grid2500;

· for SA: initial temperature� 400 for vm1084, 90
for d1291, 0.02 for Euc1000, 0.03 for Grid2500;
number of temperature decreases� 60 for
vm1084 and d1291, 30 for Euc1000 and for
Grid2500; geometric decreasing with a ratio
equal to 0.925 for the four graphs.

With these values, we get the results displayed by
Figs. 11 and 12: they show the evolution of the
average values taken by f over 100 tests when the
number of evaluations devoted to Noising1 or to
SA varies (with a logarithmic scale) from 100NS to
10,000NS.

We see that Noising1 is more e�cient than our
SA, whatever the number of evaluations is. Notice

Fig. 11. Evolution of f in function of total nb it=NS for vm1084 (left) and d1291 (right).
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that, for a same number of evaluations, the CPU
time needed by SA is about three times the one
consumed by Noising1, for the same reasons as
before.

Fig. 13 shows the sensitiveness of Noising1 with
respect to rmax (left) and to rmin (right) when ap-
plied to vm1084 (we get the same kind of results
for the other graphs). For this, we ®x the number
of evaluations to 1000NS (here also, other choices
for the number of evaluations lead to similar
tunings); rmin is equal to 0 when rmax varies, and
rmax is equal to 400 when rmin varies. As for the

randomly weighted TSPs, we observe that it is
better not to choose rmax too small; here, the values
belonging to [400, 1500] give satisfying results with
an optimum around 600. For rmin, it is clearly
better to choose it equal to 0, so that Noising1
®nishes like an ``unnoised'' descent.

We also studied the e�ect of the variants lead-
ing to Noising2 (introduction of ``unnoised'' de-
scents and periodic restarts from the best solution
computed since the beginning). The results are
given by Fig. 14. The left part of Fig. 14 shows the
evolution of f in function of a � 2b with 16 b6 10

Fig. 13. Sensitiveness to rmax (left) and to rmin (right).

Fig. 14. Sensitiveness to a (left) and to m � 1000=nb restarts (right).

Fig. 12. Evolution of f in function of total nb it=NS for Euc1000 (left) and Grid2500 (right).
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(b � 10 involves that there is no ``unnoised'' de-
scent) while there is no restart. The right part of
Fig. 14 shows the evolution of f in function of

m � total nb it
nb restarts� NS

� 1000

nb restarts

(m � 1024 involves that there is no restart) while
there is no ``unnoised'' descent. It clearly appears
that, for this type of TSP, these variants are not
desirable, their e�ects are rather negative. Thus it
seems better not to apply them and it is the reason
why we have detailed here the results only for
Noising1 and not for Noising2 (nevertheless, the
results provided by Noising2 are better than those
of SA).

As said above, Euc1000 belongs to the family of
the Euclidean TSPs for which the vertices are
randomly drawn inside the unit square with a
uniform distribution of probability. In such a case,
Beardwood et al. [3] proved that the ratio of the
optimal value f � of f to

���
n
p

tends to a constant
limit k when n tends to in®nity:

lim
n!�1

f ����
n
p � k:

They estimated the value of k and found
k � 0:749. According to Stein [15], the value of the
limit would be rather k � 0:765. Johnson and
McGeoch [8] think that these two values are
overestimated and propose k � 0:7124. In our ex-
periments with Euclidean TSPs on 1000 vertices,
we get ratios equal to 0.739 for Noising1 and equal
to 0.745 for SA (for the same value of n, the ratio
provided by SA in [4] is equal to 0.749).

5. Conclusions

The study described in this paper is done with a
®xed number of evaluations. It is the criterion
which is less favourable to the noising method.
Considering for instance the CPU time would
clearly reinforce the conclusions: for the same
amount of evaluations, our SA is about three times
longer than Noising1 or Noising2. Another rele-
vant criterion would be the number of 2-opt
transformations performed during the process. We

observe that, still for the same amount of evalua-
tions, our SA makes about eight times more
transformations: the conclusion would not be
di�erent, but the gap between the methods would
be more important.

The noising method is quite simple to tune. For
instance, Noising1 gives pretty good results with
rmin equal to 0. Then, it is su�cient to tune rmax and
to choose the number of evaluations with respect
to the time that the user can spend on his or her
problem. As the optimum value of rmax depends
very little on the number of evaluations, it is easy
to ®nd a quick and good tuning of rmax with rather
few evaluations (but not too few!) and to keep it
for more evaluations. Moreover, we see that the
sensitiveness of this parameter is not very impor-
tant; so it is not necessary to tune it very precisely.

For the scheme of Noising2, even if we set the
coe�cients a and nb restarts as parameters in or-
der to study the e�ect of the corresponding vari-
ants, we advise the user to ®x their values a priori
to 4 for a and to

�����������������������������
total nb it=NS

p
for nb restarts, as

we do above. This strategy avoids the tuning of
two parameters and gives usually good results.
Indeed, we tried these variants on other problems
(see [6] for references) and we got almost always
the same tuning.

Of course, the user may also adopt these values
in a ®rst phase and try to improve them later.
Another possibility, that we are studying now ([7]),
consists in designing a self-tuned version of the
noising method that the user could apply to a
broad range of combinatorial optimization prob-
lems with only one parameter: the total amount of
CPU time (or another resource) that he or she
would like to spend to solve his or her problem.
About the comparison between Noising1 and
Noising2, we observed that usually Noising2 is
more e�cient than Noising1, though it is not al-
ways the case, as shown for instance by the
Euclidean TSP...

We think that the noising method deserves in-
terest because it provides, as well as (and some-
times better than) other methods like simulated
annealing, a way of solving hard problems like the
TSP with a usually ``good'' solution within a
``reasonable'' CPU time. We hope that other re-
searchers will try to apply the noising method,
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alone or hybridized with other heuristics, to other
problems; our aim will be reached if this paper can
stimulate them to do so and can help them in
adapting the noising method to their problems.
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